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A CONTINUUM DAMAGE MODEL 

FOR VISCOELASTIC MATERIALS 

by 

Y. Weitsman 
Texas A&M University 

Abstract 

This paper presents a continuum damage model for viscoelastic 

materials. "Damage" is expressed by two symmetric, second-rank tensors which 

are related to the total areas of "active" and "passive" micro-cracks within a 

representative volume element of the multi-fractured material. 

Viscoelasticity is introduced through scalar-valued internal state variables 

that represent the internal degrees of freedom associated with the motions of 

long-chain polymeric molecules. The constitutive relations are established 

from basic considerations of continuum mechanics and irreversible 

thermodynamics, with detailed expressions derived for the case of initially 

isotropic materials. It is shown that damage causes softening of the material 

moduli as well as changes in material symmetry. The special cases of uni- 

axial damage under uni-axial stress and the interaction of damage with 

moisture diffusion are also considered. 



1.  Introduction 

Continuum damage modelling, pioneered by Kachanov (1958), has become a 

most active subject of research in the recent decade. A comprehensive review 

of work in this area was given recently by Krajclnovic (1986). 

Thus far, most of the modelling concerned the behavior materials like 

rock and concrete which exhibit brittle behavior, or metals - which creep upon 

reaching a plastic range. Very little attention was paid to the modelling of 

damage in polymeric materials that creep viscoelastically. In a recent work 

by Schapery (198O), viscoelastic stress-strain relations were modified to 

include the effects of damage. However, since those relations were not 

derived from a free energy and the tensorial character of the damage variable 

was not identified, the above approach could not specify the changes in 

material symmetry which may occur in damaged configurations. 

Viscoelastic response in the presence of distributed micro-flaws occurs 

in solid propellants and is likely to be encountered in thermoplastic 

composites. In contrast to rock and metals, polymeric materials absorb 

various kinds of solvents, which may damage the polymeric composites in a 

variety of ways. In the case of water absorption by epoxy-based composites, 

such damage was noted by several investigators (e.g. Ashbee and Wyatt (I969), 

Shirrell et.-al. (1979), Drzal et.al. (1985), and Jackson and Weitsman 

(1985)). Coupling between damage and diffusion was modelled by Weitsman 

(1987d) assuming elastic response. 

In section 2 of the present work the choice of internal state variables 

to model damage is motivated by micromechanical considerations. Consequently 

"damage" is represented by two symmetric second rank tensors. This 

representation resembles the form employed by Murakami and Ohno (198I) - 

although their choice derived from different physical and mathematical 



considerations. 

In section 3, viscoelasticity is introduced by means of scalar valued 

internal state variables which correspond to the degrees of freedom afforded 

by the motions of molecular chains within the bulk polymer. The thermodynamic 

theory is then applied when this set of variables is present in addition to 

the tensor-valued damage state variables. 

In section 4, the special case of an initialy isotropic medium is 

considered. Viscoelastic constitutive relations are formulated, accounting 

for both damage growth and contraction. 

Some specific circumstances are considered in section 5.  These include 

the case of parallel, uni-directional damage and stress and the interaction 

between moisture flux and damage in the absence of stresses. 

2.  Basic Equations, Damage and Internal State Variables 

When a solid body absorbs solvent from the exterior the mass contained 

within the material volume of the solid is not conserved and the solid-solvent 

mixture is a thermodynamically open system. The basic equations for this 

circumstance were developed by several researchers, including Prigogine 

(1968), Biot (1973), Rice and Cleary (1976) and Kestin (1979). A version of 

these equations was given recently by Weitsman (1987a,b). Accordingly, the 

"reduced entropy inequality" is expressed as follows*: 

^s^ - 'ij'ij - Ps^^ - (^i/T)gi + ^"^ -  ^^'i^i - gi^i s > 0 (1) 

In eqn. (1) $ is the Gibbs free energy, p - the mass density of the 

solid, E.  - components of the infinitesimal strain tensor, a. .  -  components 

*Eqn. (1) follows an earlier expression [Weitsman, 1987a, eqn (17)] upon 
considering infinitesimal deformations and p* = pil)-o  e 

s   s    ij ij- 



of Cauchy stress, s - entropy density of the solid-solvent mixture, T - 

temperature, q^ - components of the heat flux vector, g^ -  3T/3x., m - solvent 

mass, f| - components of the flux of m, y and s - the chemical potential and 

entropy of the solvent in a reservoir in thermodynamic equilibrium with the 

solid-solvent mixture. 

To motivate the choice of damage variables, consider a statistically 

representative volume element (RVE) containing K microcracks, which may be 

partially or completely closed. If the material consists of several phases, 

then consider their equivalent homogeneous properties. 

Let S^ denote the open ("active") surface of the kth micro-crack, and s\ 

its closed ("passive") surface, as shown in Fig. 1. The "macro"-level 

stresses and strains are quantities averaged over the volume of the RVE. 

Assuming infinitesimal deformations, these "macro" quantities are given by the 

following, well known expressions:        "^ 

^ij = V I  ^ij(^)^^ -  2V ^l  ^<^J - V.)dS 
o    . 

K 

+ 2  J     (T/'^^X + T/'^^xJdS}       (2) 

and  . ■ \^\ 

^ij ^ V I  ^ij(2)ciV = ^ { J (u.n.° . u.n.°)dS 
o 

^ W   .  .. „ (k) 
- 2  J     ("i"i   + u.n/^^)dS}      (3A 

k = 1   »   1 J      J 1 
^"^     S, US, 

k k 

In eqns. (2) and (3) S^ denotes the outer surface of the RVE, T- denote 

tractions, n^ are components of the outward unit normal, and u- are 

displacements. 



If the tractions T^-^"^) are continuous across all surfaces S^ and S,^*, and 

T^° correspond to a uniform stress field a?. , namely T.° = o?.n.(S ), then it 

is well known that o.. = o.^.. 

Let Au^ and AU^ denote normal and tangential components of displacement 

discontinuity at points on some surface S.  Then, by hypothesis, on all 

surfaces S^      AU^^ ' =  0, while AU^^ ^ occurs against the resistance of 

frictional forces.  It is therefore reasonable to expect that AU on the 
s 

surfaces S|^ are much smaller than AU on surfaces Si.. 

Consequently, it is assumed that, instead of eqn. (3), e. . is given by 

;  J (uA^^  + u.nf hdS} (3a) 
=1 S,    ^    "J ' 

^0 
+ I 

k = 

Although S|^ no longer appear explicitly in eqn. (3a), these surfaces of 

discontinuity still affect e. . through an implicit presence in u,-. 

To amplify this point, consider linear elastic response. In this case 

a.. and e.. in the RVE can be constructed by superposition of; 

(a) T^-° = o^-jnj(SQ) acting on the intact (undamaged) RVE, and 

(b) T^o = 0 on SQ, T^C^) = -0°. n.^^^  on S,^, while on S* AT^.(^) = 0, Ku^^^)  = 

0, and AUg^*^) are related linearly to the tractions. (k=l,2,. ..K). 

Since in part (b) all tractions across S|^U S|^* are continuous, obviously 

°i 1 ^  °ii ^°'" ^^^ superposed solution. 

In view of the linearity of the problem, all displacements are 

proportional to a. P.    Hence for part (a) 

"l"(i' - S°jk« ^f,l (4a) 

while for part (b) 



^^^^(^^ --  ^ka^^ ^^'   ^2'   ••• ^K' S^*. s/ s/)a^°        (4b) 

In (4a) S^   denote the compliances of the undamaged material. 

Substitution of eqns. (4) into eqn. (3a) yields 

K 
^ij ~-  {^ijk. - 2V ^h[ ^h^i  (X. S^, ... S^, S^ , ... S^ )ny^^ 

.P.,^(x, S^, ....S^, s/, ....s/)n('^))dS}5^^    (5) 

Eqn. (5) can be expressed formally as 

e.. . S..^^ (S^, ....S^;  s/, .... S* )a^^ (6) 

where S^ are the damage affected compliances. However, eqn. (5) 

provides an additional insight by implying that changes in material symmetry 

are mostly due to the configuration of "active" cracks, while both "active" 

and "passive" cracks contribute to the overall softening. The above 

assumption simplifies the constitutive expressions developed in section 4. 

However, it should be emphasized that the general development of the 

constitutive formalism does not depend on the assumptions that led to the 

approximation expressed in eqn. (5). 

It seems that a complete accounting of the response of the RVE requires 

the incorporation of 2K parameters which represent the surfaces S^. and S^^ 

(k=1,...K). Since the shapes of those surfaces are generally unknown, they 

may be approximated by some equivalent flat surfaces, namely by vectors D^'^^ = 

D(k)j^(k) ^^^  p«(k) ^ p*(k)^(k) (^Q ^^^ ^^  ^^   ^^^^   ...K). However, since each 

microcrack has two equal and opposite surfaces, the representation should be 

independent of the sense of n^'^^   Following Spencer (1962), this is 

accomplished by representing each microcrack by the symmetric dyad 

A^'^) - U^^\_^^\     Similarly we have A*^'^) - u'^^V^^\ 

Due to the paucity of detailed information regarding the size and 



location of the surfaces S^^ and S^ it is proposed to account for their joint 

effect on P.^^ in eqn. (4b) and S.^^^^ in eqn. (6) by means of their dyadic 

sums, namely through 

[^ 

and fj^ 
K 

A  =  Z  D ^^ D ^^ 

Hence, the effects of "damage" are represented by two, "raacro"-level, 

internal state variables that are symmetric, second-rank tensors. 

The selection of A to represent damage was recently employed by Weitsman 

(1987c).  It was also alluded to in an earlier work by Kachanov (198O). 

The tensors A and A can be non-dimensionalized through division by a 

characteristic area A, e.g. any one of the "walls" of the RVE. This leads to 

the non-dimensional quantities 

2**2 
a = A/A ,  a = A /A (8) 

Although the present work considers infinitesimal strains (e. . << 1), the 

abovementioned representation of "damage" does not infer small a-- and a-.*. 

Consequently, Taylor series expansions are useful in e.. but not in a-, and 

As mentioned earlier (Weitsman, 1987c) the present choice of damage 

variables yields, in the case of randomly oriented micro-cracks of equal area, 

the intuitively appealing result a. = a^ 6.. in both two and three 

dimensions. This outcome, which implies that randomly distributed damage 

affects the material's response as a scalar quantity devoid of orientation, is 

not borne out when a vectorial representation D = Dn is chosen for "damage". 



8 

Viscoelastic behavior, which occurs most commonly in polymeric materials, 

has been attributed to the various degrees of freedom afforded by the motions 

of intertwined long-chain molecules. Such considerations led Rouse (1953), 

Bueche (1954), and Zimm (1956), to express the motions of molecular chains 

consisting of N segments in forms which, upon transformation to principal 

coordinates and normal modes, resulted in N scalar-valued internal state 

variables. These formulations motivated subsequent researchers (Biot 1954a,b, 

Schapery 1964, 1966, 1969) to derive a theory of viscoelasticity from 

fundamental concepts of irreversible thermodynamic processes, with 

irreversibility stemming from N internal state variables whose "growth laws" 

derived from the motion of chain segments subjected to viscous resistance. 

It is worth noting that in the abovementioned works the tensorial 

character of the internal state variables was not specified and stress-strain 

relations for viscoelastic materials of various symmetries were inferred from 

analogies with the elastic case. This procedure will not carry over to the 

present work, which incorporates "damage" by means of two symmetric second- 

rank tensors. As shown in sections 3 and 4, the derivation of constitutive 

expressions and symmetry relations hinges on the identification of the 

viscoelastic internal state variables as scalars. 

3.  Constitutive Relations: Thermodynamic Considerations. 

Consider a viscoelastic material with continuously distributed damage 

representd by the symmetric second rank tensors a^^., a..* defined in section 

2. Furthermore let y^ (r=l,...N) denote N scalar-valued internal state 

variables which represent the internal degrees of freedom of molecular motion 

within the viscoelastic polymer. 

The subsequent formulation is based upon the premise that the internal 



molecular motions, represented by y^, occur on a dimensional scale which is 

much smaller than the micro-damage expressed by a^. and a-.*. This suggests 

that the viscoelastic retardation times are unaffected by damage, although 

damage growth rates are influenced by the inherent viscoelasticity of the 

material. 

To maintain tractability, and focus on the effects of damage, we shall 

assume a common time dependence for all compliances. This assumption is valid 

for many isotropic polymers which exhibit a constant Poisson's ratio. 

Accordingly, consider a Gibbs free energy o of the form 

$ = f(Oij. a.j, a.j, m, T)*(m, T, y^)   (r=1,... N)      (9) 

Without loss of generality let f > 0. Also, let 4. be dimensionless. 

Consider a representative volume element subjected to fixed levels of 

o.j, m, and T.  Following Coleman and Gurtin (1967), this circumstance will 

trigger an irreversible thermodynamic process in the material, causing the 

internal variables a^j, a. and y^ to drift towards their equilibrium values 

e   ^e     e 
a. ,, a.. and y 

According to the extremum principles of thermodynamics (Callen, 196O) the 

Gibbs free energy attains a minimum at a^^, a.^ and y ^. Therefore, at those 

values we have 

W '- ^'      ^:^ '- ^'       * ~- ^ (10) 
r-        ij      3a 

and ^J 

22? 
1    3 ^ r  .       3 $   ,   ,       3 $ » 

f s 'r ij      -^  3Y 3a. .     -^ 
r ij 

2 2 ? 
1   3 *     .   .       3 $ *   1  9 *      »   * 

ij ka   -^ 3aii3a,„  ^J  ''''  ^3a..3a, „  ^^ ^^ 
ij ka ij k«. 
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Eqn.  (11) holds at a^ , a.  , y^® for all arbitrary variations 

6a.., 6a.. and 6Y , 
ij'   ij     V 

Expanding $ about a.^, a.^^, y^^  employing  eqns.  (9)  and  (10)  and 

assuming y < Y  « 1 we get 

'<°ij. ". ^' -i'y  -i"°. V' -'"*-2 «"ij. h]- -'"■  "•■ ^' ITV • 

(Y -Y )(Y -Y ) + higher order terms in (y -y ) r r   s s r r (12) 

Alternately, an expansion about a.. = a.^, a. ,  = a.^ and Y = 0 eives 
ij   ij'  ij   ij    'r    ^ 

Ho..,  m, T, a.J, a*^ , y^) = Ha..,  a.J, a*^ m, T, 0) 

+ f(o. . a. ., a. . , m, T) 
34i 
3Y, 

y^.2^(a.j. a.., a . ., m, T) — 

y =0 r 
3Y r 's 

Y  Y r 's 

+  higher order terms in y (13) 

In view of the assumption that (y^, y ) « 1 expansions (12) and (13) are 

equal, therefore 

*(o.j, m, T, a.J, a.j®, 0) = $^ 

3 ip + ^ f(a.., a.", a.^, m, T) —^-^ 
2   ij'  ij'  ij'  '  ^  8y 3 Y r s 

34) 

e e 
Y  Y r s 

Y =Y 
p p 

3Y, 

3 (f    e 
  Y„ 3y 3y 
r s 

v-' Y = Y 
P   P 

and, in particular 

(14a) 

(14b) 

3 iji 

3y 3y 
r s 

3 <p 

A   3Y 3Y y =0    r s Y  = Y 
P    P 

(14c) 

Denote 34) 
9Y, 

= 4) and -—~— 
rJ^ 3Y 3Y y =0       'r 's v-" rs 

.  It follows from eqns. (9), (11) and 

(14a) that '^      > 0 independently of a.- . and a,- . rs ij    ij 
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Following the conceptual models of Rouse (1953) and Bueche (1955), and 

their incorporation into a growth relationship for the internal state variable 

as proposed by deGroot and Mazur (1962), Blot (1954a,b) and Schapery (1964), 

assume that y^ depend only on that portion of $ which concerns the internal 

processes within the polymer (excluding damage). Thus let 

1^ = - b  ;      (r,s = 1,...N) (15) 
r 

For linear viscoelastic behavior b^^ = b^g(m,T). Furthermore, by 

Onsager's principle b„^ = b_^. 

Expanding 4)(m,T,Y^) in powers of y^, truncating after the second power in 

view of the foregoing assumption that y < < 1, we have 

4.(m,T,Y^) -  *(m,T,0) + *^(m,T,0)Y^ + ^ 4.^g(m,T,0)Y^Yg     (16) 

Substitution of (16) in (15) gives 

*r ^ *rs ^s '-  -^s 's (17) 

Substitution of the specific form of $, given in eqn. (9), into eqn. (1) 

yields 

„   3f  ^ • 3f  , • 3f    • »       3$ .      3$ • 

-Pgf 4.^*^- ^ij'.^ - Pg sT - (q./T)g. + y ; - y^.f. - g.f.g > 0    (18) 

Since eqn. (18) cannot be violated for any process, familiar arguments 

(e.g. Jaunzemis 1967) give 

,  3f 3t 3$ 
^ij = -^3* J^.   '  ^ -- 's ^ ^  ^ -- - ^ (19) 

and. 

-V ^ ^j -^s* r^ Kj-%'  i^ 'r- (^i/T)gi - fiM^i - g,r.   ~s  > 0 (20) 
ij        da. r ' 
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In particular, at fixed damage, moisture and temperature 

3*  •    ^     ■ 
- JT 'v- ^ (20a) 

r 

Equations  (15)  and  (20a)  give b  * y    >  0, namely  b^„(m,T)  are 

components of a symmetric, semi-positive definite matrix.  Since a similar 

conclusion was reached earlier for 41   it is possible to diagnoalize b  and 

41  simultaneously and rewrite eqn. (17) in the form 

B^ *P + Xj, Yj, = -<t>^ (r = 1,2,... N. No sum on r)     (21) 

The solution of the N, now uncoupled, equations (21) is 

-t/Z 
Yj, = K^(l-e   ^) (r = 1,... N. No sum on r)        (22) 

where K^ = -*r^^r ^"'^ ^r = ^r^X^ > 0- Both K^ and Z^ depend on m and T. 

As noted by Schapery (1969), if the dependence of b^^ on m and T is 

common, namely 

b^3(m, T) = b(m, T)b°        (b°  constants) (23) 

then, eqn. (17) reduces to 

4>+4iY+b^— Y=0 (2h) r        rs    s        rs dijj    s ^     ^ 

and, instead of (22), we have the simpler result 

Y^ = K^d - e    ^) (25) 

In equations (24) and (25) ip = t/ b(m,T) is the "reduced time", and b(m, 

T) is the moisture-and-temperature-dependent shift factor. 

If, in addition, all <t)^^ = b^(m, T)*^" , 4,^° ^ constants, then eqn. 

(17) reads 
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and its solution reduces to 

V = --^(^ -^   ) (26) 

^  bg(ni,T) 
where   ^ = bgCm, T)^ =-^^j^^-^ t (27) 

An expansion of <t)(m,T,Y^) in powers of y^ - truncating after the second 

power - and employing the expression given in eqn. (26), yields the form* 

L     -5/T 
* = f /(l - e  ^) (28) 

In the case of a continuous spectrum of retardation-times we obtain 

CO 

*(m,T.t) = ^ J L(T) (l-e-^/^)dT = -r^ D(0 (29) 

To proceed beyond this stage it is necessary to consider material 

symmetry. Isotropy will be selected, since it applies to particle reinforced 

polymeric composites as well as provides the simplest illustration. 

4. Isotropic Constitutive Relations 

In the case of isotropy f(o. ., a.., a..) depends on the isotropic 

invariants of these three symmetric, second-rank tensors. Following Spencer 

(1971) these invariants are: 

h  = '^kk' ^2 = °ij-ji. h =  °ij°jk°ki' ^4 = ^kk' ^5 = ^ij^ji' ^6 = Hj^jkaki. 

^7 = ^4' ^8 = ^5' ^9 = ^6 ♦ ho = ^ij°ij' hi = ^ij^jk^ki' ^2 = ^ij°jk°ki' 

hs = ^ij^jk°ki°n-' h4 = aij^ji. hs =- ^ij^jk^kv he = ^ij^jk\i 

*Note that this form is retained even for products of y because products like 
n    -a^x n   -a.x   '^ 
n (1-e   ) can be expressed as sums z (1-e  ). 

k=l k=l 



14 

« * 
I-jy = ^ijSjk^kji^ai ^"'^ "i"^ "Of^e invariants which include o. . and a,  (with or 

-I- J        K 3o 

without aj„j^). In the above list I = ^^^ij)- ^he nine unlisted invariants 

are discarded in f because it is assumed herein that, while both "active" and 

"passive" microeracks participate in the softening of the material, only the 

active cracks affect its symmetry. This assumption is consistent with the 

earlier premises indicated in equations (3a) and (5). 

Expanding f(a. ., a , a. ) in powers of a^ , terminating at the second 

power, we obtain: 

-^sf^^ij'^j'^Ij'-^'T) - -PsV ^V Vij^ij^ Vi/jk°ki^ I Sv°.. 

^ 2 S°ij°ji - '^e^j^j^kk ^ Vi/jk\i°u 

" Vij'^ij^.^mV ^ 1 S^j°iA<l°kil 

* ^ ^0^/jk°ki^m\nV ^ ^l^jVki 

" ^^2^if2k\,\i (30) 

In eqn. (30) the terms A^, A^, ...A^2 ^^^ functions of the damage 

invariants I^^ - Ig and I .^^ -  I^^, m, and T. 

Strain-stress relations are obtained from eqn. (19),. In view of eqn. 

(30) we have 

en     ^Ps^ 
^pq = - -^ = ^^q * Vpq ^ S^J^jp * ^°kk^q ^ S°pq 

* '6(^j°ij*pq - ^pqV) ^ ^(%j^jp\k ^ ^j^jk°ki^q^ 

+ An (a^ a. .a ., o, . + a. .o. .a , a, ) 
8 pq ij jk ki   ij ij qk kp' 

+ A„a a. .a. . + A,„a .a, a.,a, a . 
9 pq ij ij   10 qj jp ik'^kJl Hi 

+ A,.(a. 0 . + a .0. ) + A,^(a. ,a o  + a a o )      ('^^) 
11  ip qi   qi ip'   12^ ij jp qi   qj ji ip^      ^^'' 
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The first three terms on the right side on eqn. (31) are related to 

hygrothermai expansion in the absence of stress.  In addition, A^, A^ and Ag 

should reduce to (OAT + BAITI) and to the "classical" compliances J^ and J2 in 

the absence of damage. 

It can be noted from eqn. (31) that e^^ = e^^. Furthermore, if all 

active microcracks are parallel to a common plane it can be shown that eqn. 

(31) corresponds to transverse isotropy in that plane. Similarly, if all 

active microcracks are parallel to two or three mutually perpendicular planes 

eqn. (31) corresponds, as expected, to orthotropic symmetry. 

For fixed a^j, a. ., a..,m, and T the viscoelastic strain-strain relations 

are simply a product of expressions (29) and (31), namely 

^pq(t) = ^p^- D(0/be (32) 

For fixed damage but for fluctuating a^., m, and T the straightforward 

employment of superposition integrals gives 

bG('"(t). T(t)) epq(t) = (a,6pq . a^apq . a^,^.,.^)   /D(,H') ^ d. 

■^(^l^pq^«2Sq^^AjV A(^-^')ff ^^ 0 

^ ^%q I  D(C-C') ^ dx + A5 J UU-C)  ^ dx + ... 

^ ^2^^-j^jp I  °(^-^') ^ dx + a^.a.. /D(,-,') ^ dx}    (33) 

In eqn. (33), a. and 6- (i=l,2,3), as well as in all Aj(j=4, ...12), 

depend on the invariants I4 - Ig, 1^4 - l^-^  and, possibly, on m and T. Also 

'*'   du 
^ =  ^(^) ^ I  blm(u)! T(u)]  ^"d  ^' = ^(^)- 

Regarding the case of fluctuating damage, consider first the situation of 
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monotonic growth of all micro-cracks. In this circumstance all S|^ =0 in 

eqn. (6) and the compliances are S.^^^ - S.^^^^ (Si(t), S2(t), ... S,^(t)). In 

the context of the continuum damage variables employed herein we have 

^ijkii^^^ " ^ijkii (^n(^))- ^"^^'^ constant a.., m, and T, and for the elastic 

case, eqn. (6) reads 

which can be expressed as 

^ij(^) = ^ijrs(%q(0)) C^smn(^pq(0)) ^m^^^W^))^^ (34) 

Eqn. (34), where C. .j^^ = S. .j^^ , shows that the case of growing damge can be 

viewed formally as that of fixed damage with an appropriately modified, time- 

varying stress. 

In view of the assumed monotonic growth, upon postulating continuity of 

^ijks, ^"" ^pq' ^^^  entire history-dependence of S. .j^^ is given by 

The circumstances considered in eqns. (34) and (35) permit the employment 

of the correspondence principle (Lee, 1955). 

Consequently, with o. . = o..(t), the strain-stress relations take the 

form 

t     ^        T aS. ., (a ) 3a (u) 
J D(c-5 ) — [a^^(T) J  f-^   duldx   (36) 
0 0      mn 

Upon identifying S^^^^  {&^^)    with the compliances and forms for the 

intially isotropic case in eqn. (31), the strain-stress relations, with 

monotonically growing microcracks, and time-dependent o.., m, and T, read 
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+ /^n, 0   (6i6pq . B^apq .  63aq.a.p)  +  (o^^  0 A^)6^^ 

- (opqOAg) Ma..o (A6a.j)]6pqMokkO (Agap^)) 

" (°kk °  (^^q/jp)) ^ (°ki  °  (Vij^jk))^pq 

^ (°ki  °  (Vpq^-j^jk)) ^ (°ij °  (VijV'kp)) 

^ (^ij °  (^^pq^-j))  " (°n  °  (^O^j^jp^k^.)) 

^ (°qi  °  (^l^ip)) ^ (°ip °  (^l^qi)) ^ ("qi  °  (^2^j^jp)) 

Mo^pO  (A^2^q.a..))} (37) 

t       . ,     " 
where D* f denotes J D(5-c') |^ di and (g o h) (T) denotes 

0       ^^ 

g(0 [h(a^,(0)) . J^ 1^ !!Mldu]. (38) 
0   mn 

Obviously, in eqn. (37) all a., 6^ and Aj (i=l,2,3; j=4,5,...12) depend 

only on the invariants I^, Ig and Ig of a^,-. 

In particular, if the material is initially undamaged then a, (ap^p(O)) 

= a, B^ (anin(O)) = 6, A4(an^n(0)) = J;^ and A5(an,n(0)) = J2 which denote the 

familiar viscoelastic expansional coefficients and compliances. In this case 

the initial values of all other terms - a^, a^, Q^,  63, Ag, ... A^2 " vanish. 

When the micro-cracks experience both growth and closure the current 

configuration, as given by a^j(t) and a..(t), may reflect distinct growth and 

closure histories. The viscoelastic strain-stress relation should distinguish 

among such histories. 

Considering an initially undamaged material, the stress-strain relations 

under damage growth and closure read: 

t       3 a, 

3T ^ ki^ ' i 3a„„     3u mn 

sa mn , 1 , du dx 
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t      .       T(C) as. ., „(a  a  ) aa 

o o        aa 
pq 

where xCg) and T(C) represent the time Intervals for damage growth and 

closure, respectively. Those intervals may over-lap. 

Reverting to the initially isotropic case, the result is still given by 

eqn. (37), except that expression (38) should be modified to read 

T(g) ah(a^^ a )    aa 
(g o h) (T) = gd) [h(o) + J   —^—E3_ ^sn du 

1       aa      au 
0 jj     ^ mn 

T(C) ah(a   a  )  aa 
.J       -"; pq   ^du] . (39a) 

o       aa       ^" 
pq 

5.  Some Special Sub-Cases. 

(a) Unidirectional damage under uniaxial stress. 

Let all "active" and "passive" micro-cracks be in planes normal to the Xo 

- direction, whereby a^^. = a "So.6,. and a. . = a &^.&^   . 

In this case eqn. (31) reduces to the transversely isotropic relation 

'm  '-  'l^kk^pq ^ •J2°pq ^ ^(°33Vq ^ ^3p'3qV) 

^' *3PV33 ^ ^^ VSq ^ VSp) (^0) 

In eqn. (40) A, B, and C represent combinations of the seven compliances 

Ag, ... A^2 of sqn- (31). Also, all five compliances in eqn. (40) depend on a 

and a . 

Consider the case of uni-axial stress a^, - o H(t) and, in addition, 

assume m=0 and AT=0. In this case the strains are 

e£ 
£,, = (J^ + J^ + 2A + B + 2C)o (41) 

In view of eqn. (39a), the corresponding viscoelastic strains are 
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^33 

da ^ 

(t)/0Q = [J^(0,0) + J2(0'0)]D(t) + Act-x) [^^2l!:il^|I|I^)d,(g) 

In eqns. (42) F^ = J^ + A, F2 = J^ + J2 + 2A + B + 2C, and T(g), T(C) 

denote times of crack growth and closure, respectively.  These expressions 

show that Poisson's ratio, as inferred from -e^^(t)/e33(t), can serve as a 

measure of the effects of damage on material properties. 

(b) Coupling of damage with moisture transport. 

Consider the flux of moisture f-j in the presence of damage but in the 

absence of stress. In addition, let the temperature remain constant, i.e. AT 

= 0. 

The flux f^ will depend on the gradient of the chemical potential z^ = 

3y/3x. as well as on a^,- and a... 

To derive the flux-gradient relationship it is necessary to generate all 

the isotropic invariants among the two vectors and two symmetric second-rank 

tensors f ^-, z^, a^-j and a^j . According to Spencer (1971, page 293) there are 

seventeen such invariants.* To maintain tractability we shall consider only 

the seven first terms from Spencer's list. Accordingly 

*^Invariants of the form U^-(n ). .U. are irrelevant for the construction of 

flux - gradient relationships. 
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In eqn. (43), all F^^^ (1 = 1,2,...7) are assumed to depend on the damage 

invariants I^^ - Ig, I^^ - I^^ listed in section 4. 

According to eqn. (43) the flux of moisture is affected by changes in the 

material symmetry caused by both damage parameters a^. and a*^.. Recall eqns. 

(19)2> (29) and (30). Accordingly, in the absence of stress 

Since the boundary condition for the moisture transport process is 

y(x|x£boundary) = p (Ambient vapor), eqn. (44) shows that even under 

constant ambient humidity, the boundary condition will be time-dependent. A 

similar conclusion was reached by Long and Richman (1959), Frisch (1964), 

Jackie and Frisch (1985), and Weitsman (1987a) - even in the absence of 

damage. 

Consider now the gradients z- = 3u/ax. . In view of eqn. (44) z- will 

include gradients of damage, through the dependence of A^ on the invariants In 

- I9. I^ - I^Y- Obviously, z- will also contain moisture gradients. 

We have: 

111 

where    F,  = -^ (-1 !^) , MA)t _,  ^ ^^ 
ki  am ^b^ aa^^^^   b^  am  b^ aa^^ 
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3m     G 

As can be noted from eqn. (45) z^ also depends on time through D(5) and 

its derivatives. 

Combining equations (43) and (45) it is observed that the flux of 

moisture is reoriented into directions of increasing damage. Since damage 

growth can be attributed to moisture [Ashbee and Wyatt (1969), Drzal et. al 

(1985), Jackson and Weitsman (1985), and Weitsman (1987d)], the latter two 

observations would indicate that moisture absorption and damage form a 

synergistic mechanism. 

6.  Concluding Remarks. 

This paper presented a continuum-damage model for viseoelastic materials 

under several simplifying assumptions. The distinct micro-cracks were 

represented by two continuum-level internal state variables. These variables, 

which were expressed by non-dimensional symmetric, second-rank tensors, 

represented the total areas of "active" and "passive" micro-cracks contained 

within a representative volume element of the material. It was further 

assumed that all viseoelastic material responses follow a common time- 

dependence, and all detailed expressions were derived for materials that were 

isotropic prior to the onset of damage. 

The resulting expressions show that, in the presence of damage, the 

response of viseoelastic materials contains two time-dependent phenomena. The 

first is attributable to the "inherent" visco-elastic behavior of the 

undamaged material, while the second is due to time-dependent damage growth. 

In addition, damage induces changes in the global symmetry of the material. 

As can be noted from eqns. (37) - (39), the coupling of damage and 

viscoelasticity introduces very significant complexities in the material's 
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response and substantial work remains to be done - both experimentally and 

analytically - to attain a quantitative and practical understanding of the 

phenomenon. 

The most important ingredient which remains missing in the present work 

concerns the growth relations for the damage parameters a and a To be 

meaningful, such relations should be correlated with basic solutions for crack 

growth and closure in viscoleastic media. Several solutions for viscoelastic 

crack growth are already available at the present time, as reviewed by 

Kaminskii (198O) and outlined by Christensen (1982). Additional research into 

the fundamentals of viscoelastic fracture is necessary. 

Acknowledgements 

The author thanks Professor R.A. Schapery for several helpful 

discucssions. 

This work was conducted under Contract N00014-82-K-0562 from the Office 

of Naval Research (ONR). The author is grateful to Dr. Y. Rajapakse of the 

Mechanics Division, Engineering Sciences Directorate, ONR, for his support and 

encouragement. 



23 

References 

Ashbee, K.H.G. 

and Wyatt, R.C. 1969 

Biot, M.A. 1954a 

1954b 

1973 

Bueche, F. 1954 

Callen, H.B. I960 

Christensen, R.M. 

Coleman, B.D. 

and Gurtln, M.E. 

Drzal, L.T. Rich, M.J. 

and Koenig, M.F. 

Frisch, H.L. 

deGroot, S.R. 

and Mazur, P. 

Jackie, J. 

and Frisch, H.L. 

1982 

1967 

1985 

1964 

1962 

1985 

Proc. Roy. Soc. London (A) 312, 553, 

J. App. Phys. 25, 1385. 

Phys. Rev. 97, 1463. 

J. Geophys. Res. 78, 4924. 

J. Chem. Phys. 22, 603. 

"Thermodynamics" J. Wiley, New York 

(p. 106). 

"Theory of Viscoelasticity" 2nd 

Edition Academic Press New York 

(Especially pages 167-179 and 

references on page 185), 

J. Chem. Phys. 47, 597. 

J. Adhesion 18, 49. 

J. Chem. Phys. 4^, 3679. 

"Non-Equilibrium Thermodynamics" 

North-Holland (pp. 273-284). 

J. Chem. Phys. 85, 1621. 

Jackson, S.P. 

and Weitsraan, Y. 1985 Proc. 5th Int. Conf. Corap. Mat. 

(ICCMV). The Metallurgical 

Society Inc. 1435, 



24 

Jaunzemis, W. 

Kachanov, L.M. 

Kachanov, M.L. 

Kaminskii, A.A, 

Kestin, J. 

Krajcinovic, D. 

Lee, E.H. 

Long, F.A. 

and Richman, D. 

Murakami, S. 

and Ohno, N. 

Prigogine, I. 

Rice, J.R. and 

Cleary, M.P. 

Rouse, P.E. Jr. 

Schapery, R.A. 

1967 

1958 

1980 

1980 

1979 

1986 

1955 

I960 

1981 

1967 

1976 

1953 

1964 

"Continuum Mechanics", McMillan, 

New York. 

Izv. Akad. Nauk. ANSSSR, Otd. 

Tekh. Nauk. 8, 26. 

ASCE J. Engng, Mech. Div. 106. 

1039. 

Prikl. Mekh. 16, 3. 

"A Course in Thermodynamics", 

Vol. I, McGraw Hill, New York, 

(pp. 582-585). 

In "Applied Mechanics Update" 

(C.R. Steele and G.S. Springer- 

Editors). ASME, 397. 

Quart. App. Math. 13, 183. 

J. Am. Chem. Soc. 82, 513. 

In "Creep in Structures" lUTAM 

Symp. (A.R.S. Ponter-Editor). 

Springer-Verlag, Berlin. 422. 

"Thermodynamics of Irreversible 

Progresses".  Interscience, 

3rd Ed. 

Rev. Geophys. Space Phys. 

14, 227. 

J. Chem. Phys. 21, 1272. 

J. App. Phys. 35, 1451. 



25 

1966 

1969 

1980 

Shirrell, CD. Leisler, 

W.H. and Sandow, 

F.A. 1979 

Spencer, A.J.M. 1971 

1972 

Weitsman, Y. 1987a 

1987b 

Proc. 5th U.S. Nat. Cong. App. 

Mech., 511. 

"Further Development of a 

Thermodynamic Constitutive 

Theory: Stress Formulation". 

Purdue Univ. Report AA&ES 69-2. 

(AFML Contract F33615-67-C-1412), 

In "Workshop on a Continuum 

Mechanics Approach to Damage and 

Life Prediction" NSF-Solid 

Mechanics Program, 119. 

ASTM STP 696 (R.B. Pipes - 

Editor), 209. 

"Theory of Invariants".  In Con- 

tinuum Physics. Vol. I:" Mathe- 

matics" (A.C. eringern-Editor) 

Academic Press, New York. 

(Especially pp. 268-293). 

"Deformation of Fibre-reinforced 

Materials." Oxford.  (Especially 

pp. 79-81). 

J. Mech. Phys. Solids 35, 78. 

In "Continuum Models of Discrete 

Systems".  Proc. 5th Int. Symp. 

on Continuum Models of Discrete 

Systems (A.J.M. Spencer - Editor) 



26 

Balkema, Rotterdam, 187. 

1987c In Proc. ASME Symp. On Constitu- 

tive Models for Unconventional 

Materials. 

19B7d Int. J. Solids Struct. 23, 1003. 

Zimm, B.H. 1956 J. Chem. Phys. 24, 269. 



27 

^ 

-*- a 

Fig.   1:     A sketch of  a  Representative Volume  Element 
Containing  K Microcracks,   with   Open  Surfaces 

S,   and  Closed  Portions  S, . 
k k 


